個人介紹:
2008年6月畢業于山東大學beat365生物技術(生命科學基地)專業。
2008年9月至2015年1月在中國科學院上海生命科學研究院生物化學與細胞生物學研究所攻讀博士學位,師從丁建平教授,主要利用X-射線晶體學研究與内吞過程相關的小G蛋白Rab GTPases在膜泡運輸過程中發揮功能的分子機制。
2015年2月至2019年6月前往美國洛克菲勒大學陳珏(Jue Chen)教授課題組從事博士後研究,利用單顆粒冷凍電鏡(single-particle Cryo-EM)技術對CFTR(Cystic Fibrosis Transmembrane conductance Regulator)蛋白發揮陰離子通道(anion channel)功能的分子機制進行了系統的闡釋;并首次揭示了兩種治療囊性纖維化疾病(Cystic Fibrosis)的藥物在該蛋白上的結合位點。
2019年7月正式加入beat365官方网站和北大-清華生命科學聯合中心,擔任研究員,開始組建膜生物學與生物物理學實驗室。
教育經曆:
2008年9月-2015年1月,博士,中國科學院上海生命科學研究院生物化學與細胞生物學研究所
2004年9月-2008年6月,本科,山東大學beat365
工作經曆:
2019年7月-至今,研究員,北大-清華生命科學聯合中心
2019年7月-至今,研究員,beat365官方网站
2015年2月-2019年6月,博士後,美國洛克菲勒大學榮譽獎勵:
興證全球基金獎教金傑出青年學者獎,
2024北京大學教學優秀獎,
2023勃林格殷格翰青年研究員獎,
2022最受歡迎教師,
2021學而思博雅青年學者,
2021拜耳學者,
2020億方學者,
2019Blavatnik區域性傑出青年科學家最終提名獎,
2018Tri-Institutional青年科學家突破獎,
2018Charles H. Revson Fellowship,2017-2019執教課程:
生物化學 膜蛋白在生物體中大約占總蛋白數量的1/3,它們在細胞内外以及不同細胞器之間的信号轉導和物質運輸等過程中發揮了重要的功能。現在市場上進行研發的藥物靶點60%左右為膜蛋白,因此,對膜蛋白功能機制及其與相應藥物結合的分子機制的研究,既有重大的生物學意義,也有潛在的藥物研發價值。 本課題組以結構生物學為主要手段,結合生物化學、細胞生物學以及電生理學等多種手段,研究生命過程中重要的膜蛋白—尤其是與重大疾病相關的膜蛋白—發揮功能的分子機制。根據功能的不同,膜蛋白可以被大緻分為四類:離子通道、轉運蛋白、受體蛋白和酶類。本課題組的研究将首先圍繞轉運蛋白和受體蛋白兩大類膜蛋白展開。在轉運蛋白這一類别中,我們着重于研究一類重要的次級轉運蛋白—溶質轉運蛋白(solute carrier, SLC)家族。該家族成員對底物進行順濃度梯度的被動跨膜運輸或者利用一種底物順濃度梯度轉移所提供的能量逆濃度梯度地轉運另外一種底物。人類有400多個SLC蛋白,被分為50多個亞家族,是除了G蛋白偶聯受體(G-protein Coupled Receptor, GPCR)家族外,人類基因組中第二大類的膜蛋白家族。該家族不同的成員間存在很大的功能和結構的異質性,它們參與了生命過程中許多重要小分子物質的跨膜運輸,包括無機離子、神經遞質、營養物質以及藥物等。而在受體蛋白類别中,我們主要研究受體酪氨酸激酶(Receptor Tyrosine Kinase, RTK)家族(包括各種生長因子受體和胰島素受體等)和Notch受體家族。這些蛋白家族均在細胞的生長、發育和代謝過程中發揮了最為基本的作用,它們的功能失調與多種癌症、神經退行性疾病和各類代謝性疾病有着緊密的聯系。
At PKU:-Representative papers(#Co-first author, *Corresponding author)(1) Dong Zhou, Nanhao Chen, Shitang Huang, Chen Song, and Zhe Zhang*; Mechanistic insights into the acetyl-CoA recognition by SLC33A1 (2025); Cell Discov. 11(1): 36. (doi: 10.1038/s41421-025-00793-1)(2) Yanyi Song#, Shuyi Jian#, Junlin Teng, Pengli Zheng*, and Zhe Zhang*; Structural basis of human VANGL-PRICKLE interaction (2025); Nat. Commun. 16(1): 132. (doi: 10.1038/s41467-024-55396-3)(3) Balázs Tóth#, Yuefeng Jiang#, Andras Szollosi, Zhe Zhang, and László Csanády*; A conserved mechanism couples cytosolic domain movements to pore gating in the TRPM2 channel (2024); Proc. Natl. Acad. Sci. USA 121(46): e2415548121. (doi: 10.1073/pnas.2415548121)(4) Yang Zhang#, Fei Dai#, Nanhao Chen#, Dong Zhou, Chia-Hsueh Lee*, Chen Song*, Yixiao Zhang*, and Zhe Zhang*; Structural insights into VAChT neurotransmitter recognition and inhibition (2024); Cell Res. 34(9): 665-668. (doi: 10.1038/s41422-024-00986-5) (5) Yu Dang#, Tianyi Zhang#, Shabareesh Pidathala#, Guopeng Wang#, Yijie Wang#, Nanhao Chen#, Chen Song, Chia-Hsueh Lee*, and Zhe Zhang*; Substrates and drug recognition mechanisms of SLC19A3 (2024); Cell Res. 34(6): 458–461. (doi: 10.1038/s41422-024-00951-2)(6) Shabareesh Pidathala#, Shuyun Liao#, Yaxin Dai#, Xiao Li, Changkun Long, Chi-Lun Chang, Zhe Zhang*, and Chia-Hsueh Lee*; Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2 (2023); Nature 623 (7989): 1086–1092. (doi: 10.1038/s41586-023-06727-9)(7) Fenglian Liu#, Yu Dang#, Lu Li#, Hao Feng#, Jianlin Li, Haowei Wang, Xu Zhang, Zhe Zhang*, Sheng Ye*, Yutao Tian*, and Qingfeng Chen*; Structure and mechanism of a neuropeptide-activated channel in the ENaC/DEG superfamily (2023); Nat. Chem. Biol. 19(10): 1276-1285. (doi: 10.1038/s41589-023-01401-7)(8) Xue Bai#, Pengyu Sun#, Xinghao Wang#, Changkun Long#, Shuyun Liao#, Song Dang, Shangshang Zhuang, Yongtao Du, Xinyi Zhang, Nan Li, Kangmin He*, and Zhe Zhang*; Structure and dynamics of the EGFR/HER2 heterodimer (2023); Cell Discov. 9(1): 18. (doi: 10.1038/s41421-023-00523-5)(9) Yu Dang, Dong Zhou, Xiaojuan Du, Hongtu Zhao, Chia-Hsueh Lee, Jing Yang, Yijie Wang, Changdong Qin, Zhenxi Guo, and Zhe Zhang*; Molecular mechanism of substrate recognition by folate transporter SLC19A1 (2022); Cell Discov. 8(1): 141. (doi: 10.1038/s41421-022-00508-w)(10) Zelin Duan#, Xuezhen Lin#, Lixia Wang#, Qiuxin Zhen, Yuefeng Jiang, Chuxin Chen, Jing Yang, Chia-Hsueh Lee, Yan Qin, Ying Li, Bo Zhao*, Jianchuan Wang*, and Zhe Zhang*; Specificity of TGF-β1 signal designated by LRRC33 and integrin αVβ8 (2022); Nat. Commun. 13(1): 4988. (doi: 10.1038/s41467-022-32655-9)(11) Zhaohan Lin#, Yinglin Li#, Yuqi Hang#, Changhe Wang, Bing Liu, Jie Li, Lili Yin, Xiaohan Jiang, Xingyu Du, Zhongjun Qiao, Feipeng Zhu, Zhe Zhang*, Quanfeng Zhang*, and Zhuan Zhou*; Tuning the size of large dense-core vesicles and quantal neurotransmitter release via secretogranin II liquid-liquid phase separation (2022); Adv. Sci. e2202263. (doi: 10.1002/advs.202202263)(12) Yuefeng Jiang, Tingting Liu, Chia-Hsueh Lee, Qing Chang, Jing Yang*, and Zhe Zhang*; The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1 (2020); Nature 588(7839): 658-663. (doi: 10.1038/s41586-020-2862-z)-Others(1) Jing Wang#, Zhengyang An#, Zhongsheng Wu#, Wei Zhou#, Pengyu Sun, Piyu Wu, Song Dang, Rui Xue, Xue Bai, Yongtao Du, Rongmei Chen, Wenxu Wang, Pei Huang, Sin Man Lam, Youwei Ai, Suling Liu, Guanghou Shui, Zhe Zhang, Zheng Liu, Jianyong Huang, Xiaohong Fang*, and Kangmin He*; Spatial organization of PI3K-PI(3,4,5)P3-AKT signaling by focal adhesions (2024); Mol. Cell 84(22): 4401-4418. (doi.org/10.1016/j.molcel.2024.10.010)(2) Xuehui Lyu#, Yingzi Cui#, Yinfei Kong#, Min Yang, Hui Shen, Shuyun Liao, Shiyu Li, Chenrui An, Haoyi Wang, Zhe Zhang, Jennie Ong, Yan Li, and Peng Du*; A transient transcriptional activation governs unpolarized-to-polarized morphogenesis during embryo implantation (2024); Mol. Cell 84(14): 2665-2681. (doi: 10.1016/j.molcel.2024.06.005)(3) Yansong Zhang#, Siyuan Lin#, Jingyu Peng#, Xiaojuan Liang, Qi Yang, Xue Bai, Yajuan Li, Jinhua Li, Wei Dong, Yue Wang, Ying Huang, Yumeng Pei, Jiabao Guo, Wanni Zhao, Zhe Zhang, Min Liu*, and Alan Jian Zhu*; Amelioration of hepatic steatosis by dietary essential amino acid-induced ubiquitination (2022); Mol. Cell 82(8): 1528-1542. (doi: 10.1016/j.molcel.2022.01.021)(4) Yingdi Wang, Yiming Niu, Zhe Zhang, Kenneth Gable, Sita D Gupta, Niranjanakumari Somashekarappa, Gongshe Han, Hongtu Zhao, Alexander G Myasnikov, Ravi C Kalathur, Teresa M Dunn, and Chia-Hsueh Lee*; Structural insights into the regulation of human serine palmitoyltransferase complexes (2021); Nat. Struct. Mol. Biol. 28(3): 240-248. (doi: 10.1038/s41594-020-00551-9)Before PKU:(1) Fangyu Liu#, Zhe Zhang#, Anat Levit, Jesper Levring, Kouki K. Touhara, Brian K. Shoichet, and Jue Chen*; Structural identification of a hotspot on CFTR for potentiation (2019); Science 364(6446): 1184-1188. (doi: 10.1126/science.aaw7611)(2) Zhe Zhang#, Fangyu Liu#, and Jue Chen*; Molecular structure of the ATP-bound, phosphorylated human CFTR (2018); Proc. Natl. Acad. Sci. USA 115(50): 12757-12762. (doi: 10.1073/pnas.1815287115)(3) Zhe Zhang#*, Balazs Tóth#, Andras Szollosi, Jue Chen, and Laszló Csanady*; Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation (2018); eLife 7: e36409. (doi: 10.7554/eLife.36409)(4) Zhe Zhang, Fangyu Liu, and Jue Chen*; Conformational changes of CFTR upon phosphorylation and ATP binding (2017); Cell 170(3): 483-491.e8. (doi: 10.1016/j.cell.2017.06.041)(5) Fangyu Liu#, Zhe Zhang#, Laszló Csanady, David C Gadsby, and Jue Chen*; Molecular structure of the human CFTR ion channel (2017); Cell 169(1): 85-95.e8. (doi: 10.1016/j.cell.2017.02.024)(6) Zhe Zhang, and Jue Chen*; Atomic structure of the cystic fibrosis transmembrane conductance regulator (2016); Cell 167(6): 1586-1597.e9. (doi: 10.1016/j.cell.2016.11.014)(7) Zhe Zhang#, ShanshanWang#, Tong Shen, Jiangye Chen, and Jianping Ding*; Crystal structure of the Rab9A-RUTBC2 RBD complex reveals the molecular basis for the binding specificity of Rab9A with RUTBC2 (2014); Structure 22(10): 1408-1422. (doi: 10.1016/j.str.2014.08.005)(8) Zhe Zhang, Tianlong Zhang, Shanshan Wang, Zhou Gong, Chun Tang, Jiangye Chen, and Jianping Ding*; Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5 (2014); eLife 3: e02687. (doi: 10.7554/eLife.02687)